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NONLINEAR PROGRAMMJNG FOR LARGE, SPARSE SYSTEMS

B. A. Murtagh and M. A. Saunders

ABSTRACT

An algorithm for solving large-scale nonlinear programs with

linear constraints is presented. The method combines efficient sparse-

matrix techniques as in the revised simplex method with stable variable-

metric methods for handling the nonlinearities. A general-purpose

production code (MINOS) is described, along with computational experience

on a wide variety of problems.
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NONLINEAR PROGRAMING FOR LARGE, SPARSE SYSTEMS

B. A. Murtagh and M. A. Saunders

1. Introduction

This paper describes our efforts to develop a nonlinear programming

algorithm for problems characterized by a large sparse set of linear con-

straints and a significant degree of nonlinearity in the objective function.

It has been our experience that many linear programming problems are

inordinately large because they are attempting to approximate, by piecewise

linearization, what is essentially a nonlinear problem. It also appears

that many real-life problems are such that only a small percentage of the

variables are involved nonlinearly in the objective function. Thus we are

led to consider problems which have the following canonical form:

minimize F(x) = f(x) x (1)

subject to Ax = b (2)

2<x<u (3)

Lwhere A is m x n, m < n. We partition x into a linear portion x

and a nonlinear por:ion xN

N

*An earlier version of this paper was presented at the 8th Int. Symp. Math.

Prog., Stanford, California, August 1973.
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The components of xN will normally be called the nonlinear variables.

Note that A and c operate on all variables x. In some cases the

part of c involving x may be incorporated into f(x; in other

cases c may be zero. We assume that the function f(x ) is continuously

differentiable in the feasible region, with gradient

NN7fQ) = g(x

The research work reported here was stimulated by some of the

deficiencies in the algorithm of Murtagh anu& Sargent [441, [50], especi&ll

when applied to large-scale systems. The resulting algorithm is related

to the reduced-gradient method of Wolfe (56] and the variable-reducion

method of McCormick [41], (42]. It also draws much from the unconstrained

and linearly-constrained optimization methods of Gill and Murray [21], (22],

[25].

In essence the algorithm is an extension of the revised simplex

method (Dantzig [12]). To use some of the associated terminology, it

might be described as an extension which permits more than m variables

to be basic. Because of the close ties with linear programming (LP) we

have been able to incorporote into our implementation many of the recent

advances in LP technology. The result is a computer program which has

many of the capabilities of an efficient LP code and is also able to

deal with nonlinear terms with the power of a quasi-Newton procedure.
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1i. Notation and Terminology

Partitioning x and F(x) into linear and nonlinear terms

is of considerable practical importance; for descriptive purposes

h 'ever, it is convenient to denote F(x) and VF() = F(C) + c

simply by f(x) and )

With a few conventional exceptions, we use upper-case letters

for matrices, lower-case for vectors and Greek lower-case for scalars.

The quantity E > 0 represents the precision of floating-point

arithmetic.

The terms "variable-metric" and "quasi-Newton' will be

used synonymously, as will the adjectives "reduced" and "projected."
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2. Basis of the Method

2.1. Variable-metric projection

Befoke turning to the canonical form, consider the problem

minimize f(2) = f(xl, ... , Xn) (4)

subject to Ax < b (5)

We will assume that f(x) can be expanded in a Taylor"s series

with remainder of second order:

+ I G(= + T khx1 (6)f( x+l)  f(xk + +ixk 2-

where

k k+l - xk

k = Vf (x

and G(xk + T-Ak) is the Hessian matrix of second partial derivatives

evaluated at some point between 3k and 3sk+1 Note that G is a

constant matrix if f(x) is a quadratic function.

Suppose that the current point, Xk, is on the boundary of m

constraints (m < n). Denoting the corresponding m rows of A by

the submatrix B we have:

Bxk =b m  (7)

Variable-metric projection methods (Goldfarb [301, Murtagh and

Sargent (44]) are based on two properties required of the step A Xk:

qT

gk + G (k) 3k B? (8)



i.e., the step A3xk is to a stationary point on the surface of the m

active constraints. The gradient of f(x) at Xk+1  (given by the left

hand side of equation (8) if k is suffic4 .ntly close to the stationary

point for a quadratic approximation to be valid) is orthogonal to the

surface and thus denoted by a linear combination of the constraint normals

(given by the right hand side of equation (8)).

Property 2.

B:tk =0 (9)

i.e. the step remains on the surface given by the intersection of the m

active constraints.

The implementation put forward by Martagh and Sargent [44]

used these two properties to produce a step given by

-k k(k - BT k) (10)

where k (an estimate of the Lagrange multipliers for B) is obtained

by substituting equation (9) into (8):

= (BSkBTr) BSk k (i)

is a step-size parameter used to adjust the length of the step A',

and S is a variable-metric approximation to G1 (x). A rank-1

kE

updating procedure is used to modify Sk each iteration. This allows

the matrix (BSkBT)-l to be updated by a rank-1 correction also. Note

however that no advantage is taken of either B or G being sparse,

-1since the matrices G and (I3G'B)- are in general dense.



The procedure works well in many cases (see [50]), but storage

limitations prevent application to large problems, quite regardless of

numerical accuracy in the updating procedures. The motivation for the

present work, therefore, is to use Property 1 and Property 2 in a more

efficient manner, particularly for the case of large sparse systems with

relatively few nonlinear variables.

2.2. Extension to Large Sparse Systems

We return now to the canonical form of equations ()-(3). The

key to success with the simplex method lay in adopting such a canonical

form and working with so-called basic feasible solutions, which are

characterized by having n-m "nonbasic" variables equal to their upper or

lower bound. With nonlinear problems we cannot expect an optimal solution

to be of this kind. As a simple generalization we introduce the notion

of "superbasic" variables and partition the set of general constraints (2)

as follows:

m s n-m-s

Ax= B B B x b: 81 2 3 '-2 (12)

~x 3

basics super- nonbasics
basics
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The matrix B1 is square and nonsingular and corresponds to the usual

basis matrix of the simplex method; B2  iq m )e s with 0<s<n-m, and

the associated variables x are called the superbasics as shown. Both

basics and superbasics are free to vary between their bounds.

The motivation for this partitioning is provided by the following:

Theorem 1. If a nonlinear program has an optimal solution and if it involves

t variables nonlinearly, an optimal solution exists in which the number of

superbasic variables s satisfies s < t.

Proof (due to, A. Jain). Let the nonlinear variables be fixed at their

optimal values. The remaining problem is a linear program for which a

basic solution exists (s = 0). The result follows trivially.

Thus in many cases s can be guaranteed to remain small.

Using the partitioning given by equation (12), Property 1 becomes:

BT o0 (5+ Q 1 . [- B2  0

L I E J B' J [ (13)

and Property 2 becomes:

[1  B2  B3 [;s
0 0 1 L : 1 (1 )

where Lk and gk have been partitioned corresponding to the partitioning

of A (and the subscript k, referring to the iteration number, dropped

for convenience).

From (14) we have
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and (15)
and -A (16)

where W = B 1 B2 (17)

Thus)

0

Equation (13) simplifies when multiplied by the matrix

-wT 1 ] (18)
0 0 1

'First it -provides an expression for estimates of the Lagrange multipliers for

the general constraints: -W

TBl l, +  [I 0[ G I 6 . (19)

Note that when 0 0 (which'will mean x is stationary) we have

= (20)

in which case is analogous to the pricing vector in the revised

simplex method. (From now on we shall denote the solution of (20) by 7.

Next we have from (13) that

-- %3 "B- l + [0 0 1) G [ jA (21)

and again when = 0 this equation reduces to

8
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a31- BT (22)

which is analogous to the vector of reduced costs in lineex programming.

Thie third result from equation (13), following I.re-multiplication

by the matrix (18), is an expression for the appropriat. step:

[-WT  I 0] G -- ("3)
0

where

ThT T 0f a (23) Ts t

The form of equation (25) suggests that

TT

-w1 1 0] G (25)

can be regarded as a "projected" (or "reduced") Hessian an, h [-W T  I 0]g

a projected gradient, with (23) giving aNewton step in the independent

variables Ak. Note that IIhIJ 0 becomes a necessary condition for a

stationary point in the current set of active constraints, which, if

the projected Hessian is nonsingular, implies that PxI11 = 0.

While the above derivation is based on the two properties which

characterize variable-metric projection algorithms, the resultant relations

could be equally regarded as a reduced-gradient method in which

the number of independent variables is reduced to s, the dimension of

. We will not spend time here discussing the elationship between

9



the two seeminglr different approaches, but refer the reader to two review

papers by Fletcher [17) and Sargent [49].

Recently Gill and Murray [25] have considered a class of algorithms

in which the search direction along the surface of active constraints is

characterized as being in the range of a matrix Z which is orthogonal
A

to the matrix of constraint normalso Thus, if Ax = b is the current

set of n-s active constraints, Z is an n X s matrix such that

AZ = 0. (26)

In the notation of [25], the main steps to be performed each iteration

are as follows. (They generate a feasible descent direction p.)

A. Compute the projected (reduced) gradient ZA = zT k

B. Form some approximation to the projected Hessian, viz.

GA - Z GZ

C. Obtain an approximate solution to the system of equations

Z AGZn = -zT (27)

by solving the system

GA p = -gA

D. Compute the search direction p = Zp.

10



E. Perform a line-search to find an approximation to a , where

f(x + min f(x+ ap)

[x+ Op feasible)

Apart from having full column rank equation (26) is (algebraically)

the only constraint on Z and thus Z may take several forms. The

particular Z corresponding to our own procedure is of the form

Z ?I =V I ]s (28)

0 0 ]n-m-s

This is a convenient representation which we will refer to for exposition

purposes in later sections, but we emphasize that computationally we work

only with B and a triangular (LU) factorization of B
21

For many good reasons Gill and Murray [25] advocate a Z whose

columns are orthonorma. (zTz = i). The principal advantage is that

transformation by such a Z does not introduce unnecessary ill-conditioning

into the reduced problem (see steps A through D above, in particular

equation (27)). The approach has been implemented in programs described

by Gill, Murray and Picken (e.g. [27]) in which Z is stored explicitly

as a dense matrix. Extension to large sparse linear constraints would

be possible via an LDV factorization (see Gill, Murray and Saunders [29])

of the matrix [B1 B2 ]:

[B1 B2 ] =L O]DV

1.i



where L is Lriangular, D is diagonal and is orthonormal, with

L and V being stored in product form. However if B2 has more than

I or 2 coluis, this factorization 
will always be substantially more 

dense

than an LU factorization of B1* Thus on the grounds of efficiency 
we

proceed with the Z in (28). At the same time we are conscious (from

the unwelcome appearance of B1 ) that B must be kept as well-conditioned

as possible.



5. Implementation

The basic ideas were presented in the previous section; their

actual implementation in a computer code requires a good deal more effort.

The code itself is a Fortran program called MINOS * which is designed

to be almost machine-independent and to operate primarily within main

memory. The central part of MINOS is an efficient implementation of the

revised simplex method which incorporates several recent advances in

linear programming technology. These include:

1. Fast input of the constraint data in standard MPS format** using

hash tables (in particular, the method of Brent [ 6]) for storing

row-names and distinct matrix coefficients.

2. Compact in-core storage of the constraint matrix A using an elementary

version of Kalan's super-sparseness techniques [36.

3. Upper and lower bounds on all variables.

4. A version of Hellerman and FPrick's "bump and spike" algorithm P [33]

for determining a sparse LU factorization of the basis matrix B1.

5. Imbedding of non-spike columns of L within A.

6. Stable updating of the WU factors of B1 by the method of Bartels

and Golub ( 2 ], [ 3 ] as implemented by Saunders [52].

7. An improved "CHUZR" procedure# for phase 1 of the simplex method,

following ideas due to Rarick [48] anid Conn (10].

MINOS (my'-noss) = a Modular In-core Nonlinear Optimization System.

This is the CONVERT data format desc'ibed in user's manuals for the
IBM systems MS/360, MP$X and MPSX/370.

The block-triangular structure of B1 is currently being found using
subroutines MC13 and 14C16 from the Harwell Subroutine Library (Duff (14],
Duff and Reid [15 ]). Hellerman and Rarick' s P3 [352] iZ then
applied to each block,

#Implemented by J. A. Torrlin.
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For optimization of the reduced function we have implemented

a quasi-Newton procedure using the factorization GA = RT (R upper

triangular) to approximate ZTGZ. This parallels the methods described

by Gill and Murray (21), [22], Gill, Murray and Pitfield [28] which are based

on the Cholesky factorization GA = LDLT (L lower triangular, D diagonal).

Stable numerical methods based on orthogonal transformations are used for

modifying R during unconstrained steps and for certain other modifications

to R whenever the basis matrices B1  and B 2  change. (Operations on

R rather than L and D are somewhat easier to implement and involve

little loss of efficiency in this context.)

Another module which is fundamental to the success of the present

algorithm is an efficient and reliable line-search. The particular routine

used is a Fortran translation of Gill and Murray's Algol 60 procedure

delinsearch, which uses successive cubic interpolation with safeguards

as described in [241. This routine evaluates the objective function and

its gradient simultaneously when required. We have left just one parameter

available to the user to change at his/her discretion, namely, eta

(0.0 < eta < 1.0) which controls the accuracy of the search. This

flexibility has proved to be very satisfactory in practice.

14



3.1. Slmmary of procedure

An outline of the optimization algorithm is given in this section;

some of the finer points of implementation are discussed in later sections.

Assume we have the following:

(a) A feasible rector x = [ satisfying [B1 B2  B3 ]x b,

I <x <U.

(b) The corresponding function value f(x) and gradient vector

') [l P T.

(c) The number of superbasic variables, s (0 - s < n-m).

(d) A factorization, LU, of the m X m basis matrix B1.

T
(e) A factorization) R R, of a variable-metric approximation to the

s X s matrix ZTGZ.

(f) A vector 7 satisfying BT
T

(g) The reduced gradient vector h = B2T'

(h) Small positive convergence tolerances TOLRG and TOLID.

Step 1. (Test for convergence in the current subspace)

If JJhJI > TOLRG go to step 3.

Step 2. ("PRICE", i.e. estimate Lagrange multipliers, add one superbasic)

(a) Calculate = - B-•

(b) Select 7, < -TOLDJ (0,q > + TOLDI), the largest elements of

corresponding to variables at their lower (upper) bound.

If none, STOP; the Kuhn-Tucker necessary conditions for an

optimal solution are satisfied.

15



() Otherwise,

(i) Choose q = q, or q : q2  corresponding to

17, I = max ? I,\ I ;
(ii) add a q as a new column cft B2 ;

(iii) add q as a new element of h;

(iv) add a suitable new column to R.

(d) Increase s by 1.

Step 3. (Compute direction of search, p = Zp )

(a) Solve RTR% .

(b) Solve LUll -B2 p2 .

(c) Set R R

Step. (Ratio test, "CHUZRI")

(a) Find Umax > 0, the greatest value of a for which x + a2

is feasible.

(b) If am 0 go to step 7.

Step 5. (Line-search)

(a) Find a, an approximation to a*, where

f(x + i) f r (x + ep).

(b) Change x to x + c% and set f and to their values

at the new x.

16



Step 6. (Compute reduced grajdjent, h / g)

(a) Solve UTLT i'
(b) Compute the new reduced gradient, -T.

(c) Modify R to reflect some variable-metric recursion on RTR,

using /, P and the change in reduced gradient, .- .

(d) Set h

(e) If y < cymax  go to step 1. No new constraint was encountered

so we remain in the current subspace.

Step 7. (Change basis, delete one superbasic)

Here ay a c and for some p (0 <p <m+s) a variable
ma9,x

corresponding to the p-th column of [B1 B2] has reached one of

its bounds.

(a) If a basic variable hit its bound (0 < p < m),

(i) interchange the p-th and q-th columns of

[:1] and [

T T

respectively, where q is chosen to keep B non-

singular (this requires a vector 7r which satisfies

TTP

(ii) modify L, U, R and 7r to reflect this change in Bl;

(iii) compute the new reduced gradient hB = -

(b) If a superbasic variable hit its bound (n <. m+s), define

q= p-m.



(c) Make the q-th variable in B. nonbasic at the appropriate

bound, thus:

(i) delete the q-th columns of

T andT

(ii) restore R to triangular form.

(a) Decrease s by 1 and go to step 1.

3.2 Work per iteration

The work involved in one pass through the above procedure is

roughly equivalent to

(a) one iteration of the revised simplex method on a linear program of

dimensions m X n, plus

(b) one iteration of a quasi-Newton algorithm on an unconstrained

optimization problem of dimension s.

Note that the PRICE operation (Step 2) is performed only when is

sufficiently small, which means an average of about once very 5 iterations.

This is a typical frequency in conmercial LP systems using multiple pricing.

The extra work involved in the quasi-Newton steps is somewhat offset by

the fact that a basis change (Step 7(a)) occurs only occasionally, so the

growth of nonzeros in the LU factors of B1  is minimal. Thus if s

is of reasornable size and if f(x) and &(x) are inexpensive to compute,

iterations on a large problem will proceed at about the same rate as if

the problem were entirely linear.

18
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3.3 dating the Matrix Factorizations

As in tbe ilrnplex method : stable factorization of the basis

matrix B1  is important for solving equations of the form BIx = b or

T
Biz = c. Here we use an implementation of the method of Bartels and

Golub [ 2 ],3 ] for updating the factorization B= lU. Details are

given in Saunders (52]. We normally re-factorize BI every 50 iterations

regardless of the number of modifications that have been made to L and

U.

The remainder of this section is devoted to the methods used for

T zTmodifying R in the approximation RTR Z GZ whenever x and/or Z

change. The notation R will be used to represent R after any particular

modification. To ensure stability, all modifications to R have been

implemented using elementary orthogonal matrices Q. (plane rotations)

whose non-trivial elements are
c s ]

where c . + s2 1. 
3 .J

3.3.1. Variable-metric updates

Any of the usual updating formulas (e.g. Davidon [13), Fletcher

and Powell [18,, Broyden ( 7 ]) can be used to account for a nonzero change

in the superbasic variables (Step 6). The two we have experimented with are:

The Complementary DFP formula

-T- T T 1 hhT
COMDFP: R R RTR + T 1TT

The Rank-one Formula:

-T- T I T
RANKlG: R R R R+ T W

where = -h, the change in reduced gradient, and w X + oh.

19



The COMDF formula t an be used on both constrained and unconstrained

steps ( = max and a < qma., resp.). An alternative is to use RANK1

on constrained steps as long as it results in a positive definite recursion,

otherwise COMDFP. Systematic testing may perhaps reveal a slight advantage

for one strategy over another, but in the interest of simplicity we now

use COM.DFP in either case.

If a =max and amax is very small it is possible that the

computed value of Z will be meaningless. Following the suggestion of

M. J. D. Powell (private communication) we allow for this by monitoring

the change in directional derivative and modifying R only if

T T

The same test is used even if a < amax" Since hT% < 0., this means

that R is modified if

ih < 0.9,
h p2

which will normally be true if a value eta < 0.9 is given to the

parameter of procedure delinsearch, which uses 191 < eta as one criterion

for a successful search. (Note that T T hT~

Both CO?4DFP and RANKI are implemented by means of the following

routines:

RlADD: RR =R TR +vvT

RISUB: -T- = RTR _ vvT

These use forward and backward sweeps of plane rotations respectively,

as described in Saunders [51, Ch. 7], Gill, Golub, Murray and Saunders [20).

20



3.3.2 Basis change (Step 7[a))

Suppose that the p-th basic variable is interchanged with the q-th

superbasic variable. Once R has been updated to account for the move

which is causing the basis change (Step 6), a further "static" update is

required to allow for a corresponding change in the definition of Z.

The relationship between the new null-space matrix and the old is given by

Z=Z(I+evT) (29)
~q:

where e is the q-th unit vector and v is defined by the equations
q

B P ~P
Ty = BTr

T
yq =ye

v = - . + eq
Yq -

Derivation of this result is rather lengthy but the quantities involved

are easily computed and they serve several purposes:

1. The j-th element of Z, viz.

T T Ty. e. 7r B e e B1l(B e
~j-'J -p 2-i -p 1 2 _j

is the pivot element that would arise if the j-th column of B were
2

selrcted for the basis change. Hence y can be used as a guide for

determining q. Broadly speaking, the condition of B will be

pz-.-erved as well as possible if yq is the largest available pivot

21
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element (assuming the columns of B. have similar norm). In

practice it is reasonable to relax this condition slightly in favor

of choosing a superbasic variable that is away from its bounds. Thus

we define q by the following:

y = maxlyj1
Ymax

d. =n Ix. - (, xl. - ul
(x. superbasic) J

d= max(d. I . a YO xq _ 3 m

This rule is numerically more reliable than that suggested by Abadie 1 ],

which in the above notation is equivalent to maximizing IyjIdj.

2. 7r can be used to update the vector 7r that is computed in Step 6(a).-p

(after the last move but before the current basis change). Thus

7T r + (Ei /y hir
q q.-p

where h is the appropriate element of the reduccd gradient h in
q

Step 6(b). This is the updating formula suggested by Tomlin (54]

for use within the simplex method. Nonlinearity is irrelevant here

since the basis change is simply a redefinition of Z.

3. 7r can also be used to update the LU factors of B (see Tomlin [541,

Goldfarb (311).

The modification to R corresponding to equation (29) is

accomplished as follows:

22



RiPRO: ~ ( + vT) RTR (I T~ev1 )

If r is the q-th column of R, this expression may be written~q

R =(T + vT) + r )

A partial backward sweep of plane rotations Q.j (j q, q-l ..., 1)

reduces r to a multiple of and then a full forward sweep restores

R to triangular form.

3.3.3 Removal of one superbasic variable (Step 7(c))

Removal of the q-th superbasic variable implies deletion of the

corresponding column of R. The resulting upper-Hessenberg matrix is

restored to triangular form R by a partial forward sweep of plane

rotations Q (j = q+l, ... , s):

ER with]
DELCOL: Qs Qq+q+! x q-th column =

[deleted

J [



j
3.3.4 Addition of one superbasic variable (Step 2(c))

When a vector a is added to B2  the new null-space matrix is

S[Z z] where z e

Following Gill and Murray ([25 1, pp. 76-77) we approximate the vector

Gz by finite differences, thus:

FCx + 8z) - g(x)
v Gz + o(811zlr )

where 8 is a small step in the direction zz for exanple, 8 1/2/l1zll.

The following procedure can then be used to generate a new column for R:

Solve RTr = ZTv

ADDCOL: Compute a = zz - l 2, = Ioil/2

Take R

(Note that z v is best computed as the last element of ZT v rather than

from z and v directly.)

Comparison of

T r- -T ZT

R r=[T ][ P.][: zT ]

and,

24



z~~' -T-_-[z,]

zGZ z G-Z]

shows that if RTR provides a good approximation to ZTGZ

then has some chance of being a useful approximation to .TG2-

The main work involved here is in computing Balq the gradient vector

+ 5z) and the projection Tv. This work is essentially wasted if

the expression for a is not positive, which may happen for many reasons,

e.g. if Z GZ is not positive definite at the current point, if R is

a poor approximation or if R is very ill-conditioned. In such cases we

set r 0 and take p to be either (zTv)1 / 2 or 1.0, thus:

(30) = (30)

One advantage, at least, is that the subsequent search direction will

move the new superbasic variable x away from its bound, so there is

no danger of cycling on x.q

With many problems the condition a < 0 occurs only occasionally

or not at all. Computing r and p as shown then leads to significantly

fewer iterations than if (30) were used all the time. On the other hand,

a > 0 is not a sufficient condition for success. In particular if the

current point is near a singularity in Z(x) the difference approximation

to Gz is unlikely to be good. (An example is when f(x) has terms of

the form xj log x and the constraints include bounds such as xi > 10" *O

In such cases) r and p prove to be consistently very large, resulting
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in an R which is much more ill-conditioned than R. Subsequent iterations

make little progress until the associated quasi-Newton updates restore

the condition of R. In contrast, use of (30) with p = 1.0 gives rapid

progress.

Let d and d be the largest and smallest diagonals of R.
max min

As a heuristic means of detecting the above situation we monitor Dii1

and resort to (30) whenever 11viI is significantly large than dmax  or

T
smaller than d. (As a side benefit, the expense of computing _Tsmaler tan min '

and r is then avoided.) A final similar test is made on p.

In contrast to all previous discussion, the ADDCOL procedure just

described embodies a discernible level of ad hoc strategy. However our

experience with it has been good in general, and the combined use of

RIPROD, DELCOL and ADDCOL is almost certainly better than resetting R = I

at every change to the set of active constraints.
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3.4 Convergence tests

Another area in which strategy plays an important practical role

is in deciding when to stop optimizing in the current subspace and consider

moving away from one of the active constraints. Here we must enlarge on

the use of TOLRG in Section 3.l- recall that in Step 1 of the algorithm,

TOLRG was tested to determine if it was time to compute Lagrange multipliers

(reduced costs, ) and add one more superbasic variable.

Suppose that after a particular iteration we have

A = the change in the superbasic variables

Af = the change in f

= the new pricing vector

h = zTZ, the new reduced gradient

Exj ef) TOLRG, Eg = positive scalars

c = machine precision

and let T. be a set of tests (with values true or false) defined as1

follows:
Tl:ill< (Cx + Cl2("I 1

2: l6fl _ (-E + C)(1 + Ifl)

T: I1jI < TOLRG
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In place of the simple test

if T then compute N

the following combined test is used:

if (T1 and T2  and T3 ) or T, then compute N.

The general form of this test follows that used in the algorithm lcmna

of Gill, Murray and Picken [27], in which the scalars identified here by

'C )f, TOLRG and eg are fixed at certain "loose" values initially and

are then reset to "tight" values once it appears that the optimal set of

active constraints has been identified. Use of cx and cf in this

way is justified in the sense that it seems reasonable to remain on the

present set of active constraints as long as significant progress is

being made. Use of cg in T4  allows for the possibility that the

last step, though significant, may have moved x very close to an

optimum in the current subspace (e.g. the quasi-Newton procedure should

achieve this regularly if f(x) is quadratic).

In adopting the above strategy we have found it beneficial to vary

TOLRG dynamically. In the current version of MINOS this is done as

follows. Suppose that the "best" Lagrange multiplier at some stage is

?- gq _Ta . If the corresponding variable xq becomes superbasic,

the reduced gradient for the expanded subspace will be

=[ ]
Xq

Now recall from equation (21) that unless h is reasonably small, even

one further iteration could change 7 and hence N\ significantly.
q
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Therefore as a safeguard (which is admittedly heuristic) we accept ?q,Xql'

and move into the new subspace only if IjhI,. < 0.9; , which implies

We then reset TOLRG for the new subspace to be

where qg E (0,1) is a parameter which is available to the user to set
g

at his own will (and peril!). A typical value is Tg = 0.2 and its function

is analogous to that of the parameter eta in procedure delinsearch. For

example a small value of q_ allows the user to insist on an accurate

optimization within each subspace.
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4. Use of first and second derivatives

We have assumed throughout that the gradient (x) is available

and we have avoided explicit use of the Hessian matrix G(x). Some

discussion of alternatives is in order. The principal factor here is

the expense of transforming even one vector by Z or ZT . In fact if

the constraint matrix A has many rows, most of the work per iteration

lies in computing = Zp and h = ZT. (These calculations are

analogous to the FTRAN and BTRAN operations in linear programming.)

1. When 1 is not available it would often be practical to form an

approximation using finite differences along the coordinate

dircctions, e.g.,

f(x + e.) - f(x)

(The number of g9^ Is to be computed this way is equal to the nunber of

nonlinear variables.) Just one transformation with ZT is then
~T^

required, viz. h ZT .

2. An alternative which is normally viable would be to difference f(x)

along the directions z.:

f(x + 6z) - f(x)

where z. = Ze j = 1) ... ) s. Unfortunately this approach is not

practical for large problems, since storage limitations prevent saving

all s vectors z, and the work involved rules out recomputing

themn when required.

30



3. If ,(x) and perhaps G(x) are available, the system of equations

zTGzp Z--z, (31)

could sometimes be treated by a modified Newton method (Gill and

Murray (23], Gill, Murray and Picken (27]). This involves either

computing ZTGZ directly:

ZTGZ (zTGz.]

or differencing ( thus:

v. Ve.,

ZTGZi (zv + vTz)2

However the need for the vectors z. again presents severe diffi--3

culties for large problems.

4. If G is large and sparse, equation (31) could sometimes be solved

iteratively by the method of conjugate gradients (e.g. see Gill and

Murray [25, p. 133]). Storage is minimal since the method avoids

Tforming the matrix Z GZ or any approximation to it. However if Z has

s columns the method usually requires O(s) products of the form

zT(G(Zv)).

5. A final (more promising) alternative is to abandon equation (31)

and to generate a search direction by a nonlinear conjugate-gradient

type method such as that of Fletcher and Reeves [19] (e.g. see Gill

and Murray ([25], p. 134)). This takes the form
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(b) if restart then = -h

else +

(c) Z

where P, are the previous and current search directions for the

superbasics. Several methods have been suggested for determining the

scalar P, e.g.

Fletcher and Reeves (19]: n = IIn 2

Polak and Ribiere [46): = T(fi - h)/11h 2

Perry [451 h T (h_ h- 0R)/( - h)

In MINOS, a switch is made to one of these methods if the number of

superbasics s becomes larger than the dimension specified for the

matrix R. A restart occurs whenever the set of active constraints

changes3 also every s+l iterations in the (rare) event that more than

s consecutive steps are unconstrained. More refined restart procedures

(e.g. Powell [(47)) will require future investigation. In the present

environment the above formulas for P have all performed rather similarly

(though seldomly as well as quasi-Newton). An example is given in §5.2.4.

To summarize: the reduced-gradient approach allows maximum efficiency

in dealing with large sparse linear constraints, but at the same time it

alters our perspective on the relative merits of Newton, quasi-Newton and

conjugate gradient methods for handling the nonlinear objective. Strangely

enough, even if the exact Hessian matrix were available (no matter how sparse)
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we could not afford to use it. In this context we find that quasi-Newton

methods take on a new and unexpected importance. The storage required for

the Hessian approximation is often moderate even when there are many linear

or nonlinear variables, as long as the total number of superbasic variables

is of order 100 (say) or less. Otherwise, a conjugate-gradient method

remains the only viable alternative.

4. 1. Qaadratic progrws

The above statements do not hold if G happens to be a constant

matrix. In this case the relation

RTR = Z GZ (32)

T
can often be maintained exactly without recomputing Z GZ every iteration.

Qi.ch a specialization has been described by Gill and Murray [26], along

,th the measures required to allow for ZTGZ being indefinite. The

present quasi-Newton algorithm could be specialized as follows:

1. Initialize R at the start of a run to satisfy (32). (This is trivial

if there are no superbasics; it may not be possible for an arbitrary set

Tof superbasics since Z GZ could be indefinite.)

2. In procedure ADDCOL (§33.4) compute the vector v = G,; directly

rather than by differencing the gradient.

3. Suppress the variable-metric updates to R (COMDFP and RANK1 in §3.3.1).
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However it is worth noting that the difference approximation to =z

will be essentially exact, so that if (32) ever holds at any stage then

ADDCOL will maintain (32) almost exactly when a column is added to Z.

A step a = 1.0 along the next search direction will then move x to the

new subspace minimum. Now it is easily verified that the subsequent

variable metric updates will cause no net change to R (ignoring slight

rounding error in the case of COMDFP). The scene is therefore set for

another exact minimization during the next iteration.

The above sequence will be broken if a constraint forces some

step a to be less than 1.0. The variable-metric updateg will then alter

R slightly, (32) will cease to hold and the next subspace minimization

may require more than one iteration. In certain applications this could

be undesirable, but more generally the robustness and self-correcting

properties of quasi-Newton methods offer compensating advantages, including

the ability to start with any matrix R (such as I). Suffice to say

that the general algorithm comes close to being "ideal" on quadratic programs,

without undue inefficiency or any specialized code.
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s . Computational Experience

Although the prime application of this research is to large-scale

linear programs with a nonlinear objective function, we have endeavored

to attack a comprehensive range of problems to aid development of the

algorithm. It is unfortunate that large-scale nonlinear problems are not

widely reported in the literature, so that many of the results discussed

here refer to problems which are solely within the authors' own purview.

A brief description of each problem is given. Fuller details of

constraint data, starting points, etc. must be left to a future report.

Three of the starting options provided in 4INOS are as follows:

I. (CRASH) A triangular basis matrix is extracted from the matrix A,

without regard to feasibility or optimality. The number of superbasic

variables is set to zero.

2. (Initialization of nonlinears) The user specifies values for any number

of the nonlinear variables. These are made superbasic. CRASH is then

applied to the linear variables in A.

3. (Restart) A previously-saved bit-map is loaded (specifying tL.e state

of all variables), along with values for any superbasic variables.

This allows continuation of a previous run, or an advanced start on a

different but related problem (for example the bounds I <x < u

may be changed).

Options 2 and 3 normally reduce run time considerably, but the

results reported here were obtained using the "cold start" option 1 unless

otherwise stated. A normal phase 1 simplex procedure was used to obtain

an initial feasible solution.
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5.1. Description of Test Problems

3. Colville No. 1. This is problem no. I in the Colville series of test

problems [ 9). The objective is a cubic function of 5 variables.

2. Colville No. 7. This is a quartic function of 16 variables.

3. Che.LEcal Equilibrium Problem. This particular example of the chemical

equilibrium problem was obtained from Himmelblau [34], problem 6. The

objective is of the form

f E[Ex (c +ln(x /Z x M)x [ jk jk+ jk ikkj i

(Note. Slight corrections were made to the constraint data in [34, -p. 401].

The group of coefficients (-l,-2,-3,-4) in column 13 was moved to

column 14, and a similar group in column 12 was moved to column 13.)

4. Weapon Assignment Peoblem. This problem appeared originally in Bracken

and McCormick's book on nonlinear progrnming applications [ 5], and

more recently in Himmelblau (34], problem 23. The objective function is

20 5 x..
f(x) E u (1 a.: 3 - 1)

j=l i=l ij

with unknowns x.. > 0. We have ignored the requirement that the x..
L3 - 1J

be integers.

5. Structures Optimization (..P,)- This is a series of quadratic

programming problems in structures design (58].

6. Oil Refinery Investment Model. This is typical of many linear programming

based oil refin'ny models, but has the added feature that nonlinear

returns to scale of capital equipment costs are defined explicitly.

The particular problem cited in the results has 15 nonlinear variables

of this kind. 36



7. Enery Submodel. A related research project on the development a

national energy model [43] has given rise to a fairly complex submodel

of the electricity sector. The 24 nonlinear variables are mainly the

capacities of the different types of generating equipment.

8. Expanded Energy System Model. An expanded model which covers all aspects

of energy production and distribution on a national level has been

developed (53]. This is a medium-scale linear program with 91 nonlinear

variables in the objective; again these are mainly nonlinear returns

to scale of capital equipment costs of the form

91 Pi
c.x. with 0 < pi < 1 (around 0.6 to 0.7).

i=l

9. Energy Model RS8. This is a 16-period energy model which was formulated

from the outset as a nonlinear programming problem (see Manne [38], [39]).

The objective is of the form

16 a.Z 2 + linear terms2
i=3 xiy i

with one pair of nonlinear variables xi, Yi for each time period

(those for the first two periods being known). This was the first large

problem avaiLUble to us and is of interest for several reasons. In

particular it provides a comparison with a (considerably larger) linear
2

approximation to the problem, in which each term a/y, was discretized

over a two-dimensional grid, Further details are given in §5.2,2.
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10. Energy Model ETA (Manne [40]). This is a further development of the

previous model. The objective is the same as ia RS8 with the addition

of l6 z2  for 16 variables z..

5.2. Results

The results summarized in Table 1 were obtained on a Burroughs

B6700 computer using single-precision arithmetic (c 10-1 ). The standard

time ratios quoted are relative to tne processor time required for a standard

timing program given in Colville [9 ]. The standard time for unoptimized

B6700 Fortran is 83.07 seconds.

The results in Table 2 onwards were obtained using double precision

arithmetic on an IBM 370/168 ( _- 10'). The standard time for this

machine with the IBM Fortran IV (H extended) compiler with full optimization

is 3.92 seconds. A fairly accurate line-search was normally used (eta = 0.01)

-6and the quantity IIl/IIl was reduced to 10 or less at optimality.
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5.2.1. The chemical equilibrium problem (problem 3)

This example provided useful experience in dealing with logarithmic

singularities in S(x). The objective consists of functions of the form

f X 9 ig
i i

whose gradient components are

x.
= c. + in

1 Z X.

If some xi is zero, the corresponding term in f may be correctly

programmed as (xigi ) = 0. However, gi itself is then analytically minus
igi1

infinity (unless all xj = 0), and any particular nmerical value given

to it in the gradient subroutine will result in a discontinuity in g

ii
as x i moves (even slightly) away from zero. To avoid this difficulty

we ran the problem with a uniform lower bound c. 10 on all

variables, for various values of k .n the range 4 to 10. (The problem

is infeasible with x. > lO 3 . ) Results are summarized in Table 3,

where each run continued from the run before using starting option 3.

The minimal change in f(x) is typical of dual geometric programs,

but values x =O and x. = 01l  (say) have very different

physical interpretations and therefore warrant more than the usual

degree of resolution.

In Table 4 we list the largest solution value x1 3  and the

8 smallest values in the order by which they became superbasic. The

most significant variation is in x45. Most values have stabilized

by the time k reaches 10.
41i
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For interest, the last row of Table I shows the values obtained

by the program SUMT as reported by Himmelblau 134]. There a.pear to be

no accurate significant digits in the 8 smallest x. (This may be due

to differences in the constraint data, errors in satisfying the general

constraints, or simply different machine precisions.)

Note that when x. is small the diagonal elements of the

Hessian matrix are 6g xj = O(l/x.). However these large elements

affect the reduced Hessian only when x. is basic or superbasic.

The safest strategy for these problems therefore appears to be the

following:

(a) Solve the problem with relatively large lower bounds, e.g. x. > 10

A near-optimal objective value will be obtained quickly because

the reduced Hessian remains reasonably well-conditioned.

(b) Reduce the lower bounds, perhaps in stages, to 0(cl/2) or 0(62/3).

There will be essentially no further basis changes, and in roughly

descending order the small x. will leave their bounds one by one3

to become superbasic.
Solution of problem 3 with xj > 10"4 followed by x >_ 10 required

a total of 103 iterations and 452 function/gradient evaluations as

shown in Table 2. Solution with xj > 10 directly required 188

ite-ations and 886 evaluations, primarily because the Hessian approxima-

tion became very ill-conditioned before a near-optimal point was reached.

As a natural precaution against rounding error the linesearch

procedure delinsearch avoids evaluating f(x + 0,) with values of

that are very close together. On the IBM 370/168 this prevented

-10resolution below 10- , although for this special case f(x) could
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easily be evaluated using higher precision arithmetic. The limiting

factor would then become the condition of the reduced Hessian.

5.2.2. Energy model RS8

Problem 9a in Table 2 refers to the original linearized version

of the energy model, in which each term of the form

f(x,y) = a2
xy

was approximated over a 6 x 6 grid. It has twice as many columns and

matrix coefficients as the nonlinear version 9b. Note that construction

of the small but reasonably fine grid required good prior estimates

of the optimal values for the 14 (x,y) pairs.

Run 9b is included to illustrate the rather poor performance

that could be encountered during early "de-bugging" of a nonlinear problem.

Some relevant facts follow.

(a) The bounds on nonlinear variables were conservative in the sense

that the lower bounds were far removed from the optimal solution

values and there were no upper bounds.

(b) No attempt was made to initialize the nonlinears at reasonable

values b~tween their bounds.

(c) The y variables proved to be badly scaled.

To enlarge on the last point, the Hessian matrix of f(x,y) above is
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t2

2 Y xy 2 Y y xG(x, y) = t 2 =
xy 3T x

and it follows from the diagonal elements of the triangular factor that

G has a condition number K(G) > y2 /2x 2 . Now the optimal values for

the x and y variables are all 0(1) and 0(100) respectively,

which might normally be considered well-scaled; however it means that

K(G) is at least 0(10 ), which in this case is unnecessarily large.

Replacing each y by a variable y = y/lO0 gave a significant improve-

ment as shown by run 9c in Table 2.

5.2.3. Energy model ETA

It is in runs lOa-lOc that the real benefits from a nonlinear

optimizer become apparent. This is an example of the model-builder's

standard mode of operation wherein numerous runs are made on a sequence

of closely related problems with the solution from one run providing

a starting point for the next. Here, problem 10a (the base case) was

solved 2rom a cold start with certain variables fixed at zero; for

run 10b the bounds were relaxed on 16 of these variables, and for run

lOc a further 10 variables were freed. (In this particular sequence

the starting solutions for 10b and lOc were clearly feasible. This is

desirable but not essential.)
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Compared to solving linearized approximations by standard linear

programming, some of the obvious advantages are:

1. reduced problem size;

2. reduced volume of output (in the absence of a report writer))

3. ability to prepare data for several runs in advance, since there

are no grid variables to be moved or refined;

h. the solution obtained actually solves the correct problem.

5.2.4. Comparison of Quasi-Newton and Conjugate Gradients

The weapon assignment problem (no. 4) was chosen here as a

reasonably small but nontrivial example. About 60 changes in the

active constraint set occur during the iterations.

The 'parameters being varied are

= linesearch accuracy tolerance (eta in §3);

qg = the tolerance for minimization within each subspace (see §3.4).

Recall that small values of these parameters mean accurate minimization.

For Table 5 we set qg = 0.5 and compared the normal Quasi-Newton

algorithm with each of the conjugate gradient algorithms for various

values of q. We find that Quasi-Newton is consistently superior and

is quite robust with respect to diminishing linesearch accuracy, in

contrast to the conjugate gradient (cg) algorithms. Unfortunately

there is no discernible trend that singles out one cg algorithm over

another.
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For Teble 6 the same runs were made with rg 0.01. (A more

accurate subspace minimization makes the sequence of constraint

changes more consistent between runs.) This smoothed out the iteration

and function-evaluation counts, but again there is no evidence to favor

any particular cg algorithm.

To illustrate that the cg methods are not to be discarded

immediately, in Figure 1 we have plotted the value of f(x) against

iteration number for the second row and first two columns of both

Tables 5 and 6. Thus a reasonably accurate linesearch was used for

all cases ( = 0.01). Curves 1 and 2 compare Quasi-Newton with

Fletcher-Reeves using ig = 0.5, and curves 3 and I do the same with

|ig = 0.01.

The first two curves show smooth progress for both methods.

Note that although the cg method lags behind it has essentially

identified the final set of active constraints by the time the Quasi-

Newton method converges (iteration 139). The step-function shape of

curves 3 and 4 illustrates the work that is wasted in converging to

minima within each subspace. Otherwise these curves effectively place

a magnifying glass on the tail end of the other runs. The terminal

convergence of the cg method is clearly very slow and it is here that

better restart procedures such as in Powell (47 should prove to be

most valuable.
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Quasi-Newton Fletcher-Reeves Polak-Ribiere Perry

0.001 123 375 226 8140 222 8o6 198 713

0.01 139 255 223 728 237 770 259 849

0.1 122 281 227 671 238 709 228 665

0. 9 137 300 250 721 252 749 218 578

0.3 148 291 239 648 248 688 307 814

o.4 156 289 282 742 296 853 309 762

0.5 153 242 275 695 394 1079 612 1411

0.9 207 256 694 987 >999 >2748 818 968

Table 5. Iterations and function + gradient evaluations

for the weapon assignment problem; qg = 0.5;

various linesearch tolerances i.

Quasi-Newton Fletcher-Reeves Polak-Ribiere Perry

0.001 220 615 493 1628 44o 1514 440 1495

0.01 219 548 498 1520 471 1520 466 1476

0.1 209 461 560 1597 508 1461 530 1568

0.2 218 445 582 1589 531 1517 585 1626

0.3 229 411 612 1557 634 1752 613. 1625

o.4 262 441 748 1831 691 1821 752 1788

0.5 262 377 691 1633 818 1993 894 1974

0.9 288 345 r>999 >1855 >999 >1658 >999 >1156

Table 6. Iterat.ons and function + gradient evaluations

for the weapon assignment problem; qg = 0.01

(more accurate minimization within each subspace).
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6. Comparison with other algorithms

Many of the ideas discussed here were either implicit in or

anticipated by the work of Wolfe [56], (57], Faure and Huard [16) and

McCormick (41), (42]. However there have since been such significant

advances in implementation techniques for the numerical methods involved

that there is little point in making detailed comparisons. Algorithmically,

one important difference is our emphasis on keeping the number of super-

basic variables as small as possible and changing that number by at

most 1 each iteration. With the quasi-Newton approach, this strategy

retains maximum information about the projected Hessian. Even though

the proof of convergence [141] for the variable-reduction method depended

on regular resetting of the Hessian approximation, we never set R = I

except at the start of a run or in the rare event that the linesearch

fails to find an improved point (in which case both R and the true

Hessian are normally very ill-condition). Sig-zagging is controlled

effectively by the tolerance Ig and the logic described in § 3.4.

Rates of convergence within each subspace follow from analogous proofs

for unconstrained algorithms.

Since the present algorithm possesses superlinear convergence

properties and can handle rather arbitrary sized problems, it should

be competitive with other algorithms designed specifically for quadratic

In the original reduced-gradient algorithm the set of superbasics was
effectively redefined each iteration as being the current set plus
those nonbasic variables whose reduced costs were of the correct sign.
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programming (e.g. Wolfe [55], Beale (4], Cottle [11], Lemke (371).

In particular a comparison with Beale's meth( I would be relevant,

since it is reported that his method is efficient for pxcblerms which

have a small number of quadratic terms. On general (unstr'uct,ured)

problems with m and n large it is doubtful that Wolfe's algorithm

or the linear complementarity methods would compare well because they

work with linear systems of order m + n rather than m.

A final cormaent on problems which have a large sparse set of

general constraints Ax > b in relatively few variables (thus A is

m x n with m > n). Ideally, methods designed specifically for this

case use an active-constraint strategy and avoid transforming the whole of

A each iteration (e.g. the version of the reduced-gradient algorithm

in Wolfe [57]), and the implementation of Buckley (8]). The improved

efficiency of these methods is analogous to the benefit that might be

realized in the purely linear case if the dual simplex method were applied

to the dual linear program. Nevertheless, given the use of sparse-

matrix techniques, solution by the present (canonical form) method will

be quite efficient unless m >> n. In any event, with n moderate by

assumption, this i one class of problems where the number of superbasic

variables (and hence the dimension of the reduced hessian) will always

remain manageably small.
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7. Conclusion

Our primary aim has been to combine the simplex algorithm with

quasi-Newton techniques in an efficient and reliable computer code

for solving large, linearly constrained nonlinear -programs. The full

potential of conjugate-gradient methods in this context remains to be

explored, but the necessary framework now exists; this framework will

also accommodate extension to problems with a moderate number of non-

linear constraints (e.g. Jain, Lasdon and Saunders [353). In the

meantime the code is applicable to an important class of potentially

-very large problems, viz. dual geometric programs, and more generally

it should provide a new dimension of utility to an already substantial

body of large-scale linear programmning models.
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